Activation of the skeletal muscle ryanodine receptor by suramin and suramin analogs.

نویسندگان

  • M Hohenegger
  • M Matyash
  • K Poussu
  • A Herrmann-Frank
  • S Sarközi
  • F Lehmann-Horn
  • M Freissmuth
چکیده

Ca2+ release from skeletal muscle sarcoplasmic reticulum is activated by adenine nucleotides and suramin. Because suramin is known to interact with ATP-binding enzymes and ATP receptors (P2-purinergic receptors), the stimulation by suramin has been postulated to occur via the adenine nucleotide-binding site of the ryanodine receptor/Ca2+-release channel. We tested this hypothesis using suramin and the following suramin analogs: NF037, NF018, NF023, and NF007. The suramin analogs stimulate the binding of [3H]ryanodine binding to sarcoplasmic reticulum membranes with the following rank order of potency: suramin (EC50 = approximately 60 microM) > NF037 (EC50 = approximately 150 microM) > NF018 > NF023 > NF007. The suramin-induced stimulation occurs via a myoplasmic binding site on the ryanodine receptor as confirmed by binding experiments and single-channel recordings with the purified protein. This binding site is different than that for ATP, a conclusion that is supported by the following observations: (i) Suramin stimulates the association rate and inhibits the dissociation rate of [3H]ryanodine, whereas ATP analogs increase only the on-rate. (ii) In the presence of suramin but not of ATP analogs, [3H]ryanodine binding is resistant to the inhibitory effect of millimolar Mg2+ and Ca2+. (iii) ATP analogs and suramin have an additive effect on [3H]ryanodine binding. (iv) Affinity labeling of the purified ryanodine receptor with 2',3'-dialdehyde [alpha-32P]ATP or after in situ oxidation of [gamma-32P]ATP is not affected by suramin. Thus, our results show that suramin acts as a direct and potent stimulator of the ryanodine receptor but that this action is mediated via a binding site different from that for adenine nucleotides.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Suramin and suramin analogs activate skeletal muscle ryanodine receptor via a calmodulin binding site.

Contraction of skeletal muscle is triggered by the rapid release of Ca2+ from the sarcoplasmic reticulum via the ryanodine receptor/calcium-release channel. The trypanocidal drug suramin is an efficient activator of the ryanodine receptor. Here, we used high-affinity [3H]ryanodine binding to sarcoplasmic reticulum from rabbit skeletal muscle to screen for more potent analogs of suramin. This ap...

متن کامل

Pharmacological activation of the ryanodine receptor in Jurkat T-lymphocytes.

1 Recently, we provided evidence for cyclic adenosine 5'-diphosphate-ribose, cADP-ribose, as a second messenger in Jurkat T-lymphocytes upon stimulation of the T-cell receptor/CD3- complex (Guse et al., 1999). cADP-ribose mobilizes Ca2+ from an intracellular Ca2+ store which is sensitive to caffeine and gated by the ryanodine receptor/Ca2+ release channel. In the present study we investigated t...

متن کامل

Short- and Long-Term Functional Alterations of the Skeletal Muscle Calcium Release Channel (Ryanodine Receptor) by Suramin: Apparent Dissociation of Single Channel Current Recording and [H]Ryanodine Binding

The present study demonstrates the following characteristic suramin actions on the purified skeletal muscle calcium release channel in single-channel current recordings and [H]ryanodine binding to HSR: 1) Suramin (0.3–0.9 mM) induced a concentration-dependent increase in the open probability (Po > 0.9) at 20 to 100 mM Ca and an almost fully open channel at 1 mM Ca (Po 5 0.95) with a marked shif...

متن کامل

Functional regulation of the cardiac ryanodine receptor by suramin and calmodulin involves multiple binding sites.

Suramin and structurally related compounds increase not only the open probability (P(o)) of ryanodine receptor (RyR) channels but also the single-channel conductance in a unique characteristic manner. In this report, we examine the mechanisms underlying the complex changes to cardiac RyR channel function caused by suramin and the evidence that these changes result from an interaction with calmo...

متن کامل

Suramin and disulfonated stilbene derivatives stimulate the Ca2+-induced Ca2+ -release mechanism in A7r5 cells.

We have described previously a novel Ca2+-induced Ca2+-release (CICR) mechanism in permeabilized A7r5 cells (embryonic rat aorta) and 16HBE14o-cells (human bronchial mucosa) cells (J Biol Chem 278:27548-27555, 2003). This CICR mechanism was activated upon the elevation of the free cytosolic calcium concentration [Ca2+]c and was not inhibited by pharmacological inhibitors of the inositol-1,4,5-t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 50 6  شماره 

صفحات  -

تاریخ انتشار 1996